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The possibility is considered of using two-dimensional temperature
waves for determining the thermal diffusivity and thermal conductivity
of solid and free flowing bodies from a single experiment without intro-
ducing heat sinks into the sample, Conditions are found for the reliable
achievement of the boundary conditions,

The many advantages of methods of determining
thermophysical properties based on the laws of a-reg-
ular thermal regime of the third kind (stabilized prop-
agation of temperature waves) have been discussed in
detail [1,2]. Because of these advantages temperature
wave methods are now widely used. Unfortunately, the
majority of these methods require the introduction of
thermal sinks into the sample, and in many cases this
may be undesirable or even completely unacceptable.
It is true that this factor is eliminated in the method
developed theoretically for high temperatures (above
1000° K) [4] and realized using electronic heating in
vacuum and photometric recording of the temperature
oscillations [5,6]. However, this method [4] does not
make it possible to determine the quantities a;, ,Ay,
and ¢y, from a single experiment and is unsuitable for
heat-insulating materials.

A method has been put forward [2] for determining
a3 and A; which does not require the introduction of
heat sinks into a sample, but involves double measure-
ments at different frequencies. Repeated measure-
ments are obviously undesirable. Proceeding from the
theoretical considerations in [2, 3], it can be shown
that it is sufficient to carry out the measurements at
one frequency if, in processing the measurements, use
is made of both the amplitude and phase relationships
of the recorded temperature oscillations.

Let some infinite plate, whose thermophysical prop-
erties are to be determined be in thermal contact
with a second infinite plate (standard) having known
values of ay and Ay. Temperature oscillations are re-
corded on the "free" surface of the first plate and in
the contact plane of the plates, Under experimental
conditions the "free" surface of the first placeis usually
in contact with the source of temperature oscillations
by a thin layer whose thermophysical properties are
not reflected in the standard working formulae. If the
thickness of the standard plate is sufficiently large it
can be considered a semi-infinite body. Using, in this
case, Laplace transforms to solve for the thermal con-
ductivity and converting from the transfer tempera-
ture function in the contact plane to the corresponding
amplitude-phase frequency characteristic, we obtain
for the latter the expression

O =(1+ h)/(1+h)ch( % l/'_;:)+

\

+(1—h)sh (u l/:;) . (1)

Writing this in the form
@ = Mexp (i), (2)

it is possible [3] to obtain, from the expressions for
M and &, the functions h = h(x,M) and h = h(x, 6) in
the following form:

h= Mecosx—1 +[(M2cos x—1)'—

—[1—=M?exp (—x)}j(1—M?2exp n]% (1 — M?exp (— M))-1 3)

h= t_gLM exp x. (4)
tg (x/2) — tg 6

The quantities M and 6 occurring in these equations
are found directly from experiments. If expressions
(3) and (4) are considered as a system of equations
relating » and h, then having solved it the unknown
quantities a4, A;, and cyy;, can be evaluated in the fol-
lowing form:

_20R* ./aTl+n M
@ =5 7~1—7~zl o =k an= - ()

The system of transcendental Egs. (3) and (4) al-
lows only a numerical solution, which can be obtained
using a nomogram (Fig. 1). In the rectangular coordi-
nates h, v two families of curves are constructed:

h =hm) for various values of the parameter M accord-
ing to formula (3), and h = h(») for various values of
the parameter 6 according to formula (4). The crossing
points of the two curves, corresponding to experimental
values of M and 6, give the unknown values of the quant~
ities h and ». In the working nomogram, the following
limiting values are provided for: «, from 0.75 to 3.50;
h, from -0.80 to 0.80; M, from 0.10 to 0.80; -9, from
0.30 to 1.72. The scale along the coordinate axes is
0.005 per 1 mm length, and the difference between the
values of a parameter corresponding to two neighbor-
ing curves in each family is equal to 0.01. Figure 1
shows a large part of the nomogram on a reduced scale.

From formula (5) and Fig. 1 it is seen that the
nomogram is most accurate in the region close to h =
=0, n=m

Let us find the conditions in which the standard, a
plate under actual conditions, can be considered a
half-space (a semi-infinite body). A standard plate of
thickness appreciably greater than the minimum nec-
essary is undesirable, since it increases either the
heating time for the system sample-standard to reach
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Fig. 1. Nomogram for determining the auxiliary quantities h and »
from values of M and 6.
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a constant average temperature, or the internal drop
in temperature, should the average temperature of the
system change continuously during the measurement
(cf., for example, [2]). Let us suppose that convec-
tive heat exchange occurs on the free surface of the
standard plate of finite thickness. In the case of a
standard plate of finite thickness, having obtained,
using Laplace transforms, the transfer temperature
function in the plane of contact of the plates, and con-
verting to the corresponding amplitude-phase fre-
quency characteristic § with respect to the harmonic
temperature effect on the free surface of the first
plate, we obtain

wefain oo (¢ )/ D) ex )/ Tn
e /B ooy T
o)/
s/ e [es )/ ]+
IOV PRIV | L

The least favorable cases are the limits Bi = 0 and
Bi —~ . The amplitude-phase frequency character-
istics ¢y and ¥, corresponding to these cases will be
equal to

Y,=(l +h)ch (x' l/-jg)/ch [(u-{—u')l/’—g] +
shen )}/ | @

¥, =(l+h)sh (x' ‘/jé)/sh [(u+ u’)‘/t’;] -
— hsh [(x—u')l/_—z—] . {8)

Let us consider the relationships

Y, MLAM, .
Yo M= AMy ASy),
I M exp (£ Adg)
(9)

q;:’ = M_:_MAM“' exp (i ASg).

Here the quantities AMy and AMy are obviously the
absolute errors in the ratios of amplitudes of the tem-
perature oscillations, caused by the finite thickness
of the standard plate at Bi = 0 and B — », respec-
tively, and Ad; and Ad, are the analogous absolute
errors of the phase differences.
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Using formulae (1), (7), and (8) we obtain (9) in the

following form:

¥,
]

_ ¢h (nx Vif2) [+ B)ch (x Vi72) 4 (1=~ h) sh (x V/i73)]
ch [(n+1)xVii2] +hch [(n—1)x Vi3]

v,
@

_sh (nxVi12) [(1+ k) ch (x Vij2) + (1— k) sh (x Vi72)]
sh [(n + D)% Vir2] — hsh{(n—1)x V2|

. (10)

The errors AM;, AMw, Ady and Ad,, at h = 0 and
= V2 were evaluated from Egs. (10). The variation
of the relative errors AMy/M, AMw/M, Adgy/d and
Adw/6 (in per cent) with the quantity n are shown in
Fig. 2. Inthese calculations use was made of Table
7.3 in monograph [7], which demands little precision
in the region n > 2.5. From Fig. 2 it is seen that for
the chosen values of » and h, both for Bi = 0 and Bi —
— o, both errors do not exceed 1% if n >4; for n >
> 4,5 the errors caused by the finite thickness of the
standard plate are almost zero with the most precise
measurements. In practice values of ® > V2 are usually
encountered. Calculations show that in this case values
of n can be chosen which are even smaller. For ex-
ample, for n = 2v2, a value of n = 4 is sufficient for
measurements of any precision. Calculations also
show that by choosing values of n in conformity with
these criteria the change in h in the interval [~1, 1]}
introduce almost no error into the values of M and é
determined experimentally.

NOTATION

R is the thickness of the first infinite plate (sam-
ple}; a;, Ay, cy and y; are the corresponding thermal
diffusivity, thermal conductivity, specific heat ca-
pacity, and density of the material of this plate (de-
terminable quantities); L is the thickness of the sec-
ond infinite plate (standard); @, and A, are the corres-
ponding thermal diffusivity and thermal conductivity
of the material of the second plate; M is the ratio of
the amplitude of the temperature oscillations in the
plane of contact of the plates to the corresponding
amplitude on the free surface of the first plate at L. —
— «; § is the phase difference of these oscillations
w is the heat exchange coefficient on the free surface
of the second plate; Bi = aL/A, is Biot's criterion;

h = (\Va, — A Va))/ (A Va, + hpVay)in = VEw/a R;

®'=V2w/a,L; n = n'/n.
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